Step of Proof: inv_image_ind_tp
12,41
postcript
pdf
Inference at
*
1
1
1
1
I
of proof for Lemma
inv
image
ind
tp
:
1.
T
: Type
2.
r
:
T
T
3.
S
: Type
4.
f
:
S
T
5. WellFnd{i}(
T
;
x
,
y
.
r
(
x
,
y
))
6.
P
:
S
7.
j
:
S
. (
k
:
S
.
r
(
f
(
k
),
f
(
j
))
P
(
k
))
P
(
j
)
8.
n
:
S
P
(
n
)
latex
by (%S%
\p.let x = get_distinct_var `x' p
\p.
in let n = get_var_arg `n` p
\p.in
in let S = get_term_arg `S` p
\p.
in let T = get_term_arg `T` p
\p.in
in let f = get_term_arg `f` p
\p.
in
\p.
Assert
\p.As
(mk_all_term x T
\p.As(m
(mk_all_term n S
\p.As(m(m
(mk_implies_term
\p.As(m(m(mk
(mk_equal_term T (mk_apply_term f (mvt n)) (mvt x))
\p.As(m(m(mk(m
(concl p)))) p)
latex
\p
1
: .....assertion..... NILNIL
\p1:
x
:
T
,
n
:
S
. (
f
(
n
) =
x
)
P
(
n
)
\p
2
:
\p2:
9.
x
:
T
,
n
:
S
. (
f
(
n
) =
x
)
P
(
n
)
\p2:
P
(
n
)
\p
.
origin